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Abstract

Though ubiquitous in research and practice, mean-based “value-added” measures
may not fully inform policy or welfare considerations when policies have heterogeneous
effects, impact multiple outcomes, or seek to advance distributional objectives. In this
paper we formalize the importance of heterogeneity for calculating social welfare and
quantify it in an enormous public service provision problem: the allocation of teachers
to elementary school classes. Using data from the San Diego Unified School District
we estimate heterogeneity in teacher value-added over the lagged student test score
distribution. Because a majority of teachers have significant comparative advantage
across student types, allocations that use a heterogeneous estimate of value-added can
raise scores by 34-97% relative to those using only standard value-added estimates.
These gains are even larger if the social planner has heterogeneous preferences over
groups. Because reallocations benefit students on average at the expense of teachers’
revealed preferences, we also consider a simple teacher compensation policy, finding
that the marginal value of public funds would be infinite for bonuses of up to 14% of
baseline pay. These results, while specific to the teacher assignment problem, suggest
more broadly that using information about effect heterogeneity might improve a broad
range of public programs—both on grounds of average impacts and distributional goals.
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1. Introduction

When evaluating policies, programs, and institutions researchers often rely on mean im-
pacts. While means are powerful summary measures, they can also mask economically
important information. This paper seeks to understand how measuring heterogeneity can
more fully inform welfare measures and better optimize policy choices. We ask two main
questions. (1) Theoretically, when does heterogeneity (in effects, outcomes, and social pref-
erences) matter for maximizing a social objective? (2) Empirically, how large are the welfare
gains from using heterogeneous rather than average estimates of impacts to evaluate and
refine public policy?

Although these questions have many applications, we explore them in the context of value-
added scores for elementary school teachers. Many have used value-added scores (regression
adjusted means) to measure the effects of teachers and schools (see reviews in Angrist et al.,
2022; Bacher-Hicks and Koedel, 2022); doctors, hospitals, and nursing homes (Chandra
et al., 2016; Doyle et al., 2019; Hull, 2020; Einav et al., 2022; Chan et al., 2022); and
even judges, prosecutors, and defense attorneys (Abrams and Yoon, 2007; Norris, 2019;
Harrington and Shaffer, 2023). We choose the elementary school setting because of mounting
empirical evidence that value-added scores are both multidimensional and heterogeneous in
the education context. For example, teachers affect student outcomes in multiple dimensions
such as math and reading scores (Condie et al., 2014), attendance and suspensions (Jackson,
2018), and work ethic and learning skills (Petek and Pope, forthcoming). Furthermore,
teachers also have heterogeneous effects on different types of students defined by factors such
as race and gender (e.g., Dee, 2005; Delhommer, 2019; Delgado, 2022) and socioeconomic
status (Bates et al., 2022). Similar patterns have been found in health-related value-added
(e.g. Hull, 2020).

This paper applies and extends insights from theoretical welfare economics to overcome
the limitations that arise from multidimensionality and heterogeneity, allowing us to empir-
ically evaluate the optimal allocation of teachers to classes based on this information. The
critical issue from a social welfare perspective is that in the presence of multidimensionality
and heterogeneity, value-added measures only partially order the welfare of an allocation
of teachers to students. Intuitively, this is because of ambiguity about whether the defi-
nition of a “better” teacher should prioritize gains in math versus reading scores or gains
for high-achieving versus low-achieving students (See the impossibility-like results in Condie
et al., 2014). Fortunately, whereas research in value-added has identified these problems,
research in public finance has a long history of using welfare functions to aggregate over the

heterogeneous effects of policies. We extend such insights from welfare economics for two



purposes. First, we characterize the shortcomings of relying on mean-oriented measures of
policy effects such as standard value-added to make welfare considerations in general. Then
the bulk of the paper evaluates the optimal allocation of teachers to classes using measures
of heterogeneous value-added that produce scalar, welfare-relevant statistics.

Our theoretical results show two ways that ignoring effect heterogeneity can lead to
inaccurate inference about both policy counterfactuals and how policy can be improved.
First, bias arises when mean effects are not externally valid to match effects from the policy.
For example, imagine a medical treatment that did not have serious side effects in the
population in general. If we are considering a policy that would target this treatment to
new high-risk patients, it is not clear whether the impact will be the same. Second, bias
also arises from the covariance across the target population of the heterogeneous effects
of a policy and an individual’s welfare weights. For example, consider a tax reform that
raises post-tax incomes by $3000 to the richest 50% of households but reduces incomes by
$1000 for the poorest 50% of households. Policymakers may consider this reform undesirable
for equity reasons even though it increases average incomes. These biases can both be
reduced or eliminated by estimating conditional average treatment effects along appropriate
observable dimensions and allowing for heterogeneous welfare weights. When optimizing
policy, correcting this bias can lead to significant gains through comparative advantage and
allow policymakers to direct interventions towards people with the highest marginal welfare
benefit.

These theoretical results highlight an interesting contribution of our paper. As empiri-
cal policy evaluations become increasingly common, our theoretical results characterize the
trade-offs implicit in relying on mean impacts. For example, using mean effects to predict
the welfare of an allocation is biased in general because welfare depends not just on pro-
gram impacts and welfare weights but the covariance of the two. Interestingly, this insight
is reminiscent of similar results in optimal corrective taxation of heterogeneous consumption
externalities (like alcohol). Griffith et al. (2019) show that the optimal corrective tax is the
average consumption externality plus the covariance between individual contributions to the
externality (the effect) and demand elasticities (the weight). Furthermore, in the externality
context, conditioning (in this case tax differentiation by product) also reduces the bias, as it
can in our setting.! The importance of heterogeneity and conditioning in these theoretical
settings raises questions about whether using average “sufficient statistics” is appropriate
when heterogeneous estimates could inform differentiated policies like corrective taxation

of heterogeneous production externalities (Hollingsworth and Rudik, 2019; Fell et al., 2021;

!The second insight is technically a generalization of the first, which was originally suggested in Diamond
(1973).



Sexton et al., 2021). Crucially, we speak to these trade-offs by showing how both biases can
be reduced by estimating conditional average treatment effects along observable dimensions
to allow for heterogeneity in impacts.

Motivated by the importance of heterogeneity in general, we estimate heterogeneity in
teacher value-added along the achievement distribution in the San Diego Unified School Dis-
trict, the second largest district in California. We find large gains from using heterogeneity
to more optimally allocate teachers to students. In particular, we use the methods pioneered
by Delgado (2022) to estimate the value-added of all third- through fifth-grade teachers on
student math and English language arts (ELA) scores allowing for heterogeneous effects
on students who had above- and below-median scores the previous year. Although these
measures of value-added are correlated with standard (i.e. homogeneous value-added) mea-
sures, we find substantial heterogeneity. For example, the average within-teacher difference
in value-added across groups (i.e. comparative advantage) is as large as 53% (48%) of a
standard deviation in mean value-added for ELA (math). We use these estimates to con-
sider welfare gains from two sets of possible policies: reallocating teachers to classes without
changing school assignment or allowing for school reassignment.? There are enormous gains
from reallocation. Over the course of third to fifth grade, using heterogeneous measures of
value-added to improve district-wide teacher assignments could raise student math scores
by 0.17 student standard deviations on average and ELA scores by 0.12. For context, both
changes are roughly equivalent to an intervention improving all teachers’ value-added by
30% of the (teacher) standard deviation in the relevant subject.

In this process, our paper makes three innovative contributions to the literatures on value-
added and teacher value-added. First, we demonstrate how important achievement is as a
dimension of effect heterogeneity in our education context. Whereas many papers have found
evidence of “match effects” between students and teachers sharing observable characteristics
like gender or race (Dee, 2005; Delhommer, 2019), other results reveal that these match
effects only explain part of the heterogeneity in teacher effects on the same dimensions
(Delgado, 2022). Our results suggest that focusing on demographic match is incomplete
because it overlooks how instructional differentiation along the achievement distribution
(well documented in the education literature) interacts with these characteristics. This
insight reflects other evidence from health economics that in general lagged outcomes are
one of the most important dimensions for match effect heterogeneity (as in Dahlstrand,
2022).

Second, our results highlight how combining information from multiple outcomes sub-

2In all reallocations the assignment of students to classes is held constant, as is the grade in which the
teacher teaches.



stantially improves the welfare gains from reallocations. Although it is not obvious ex ante
how to address this multidimensionality, our theory suggests combining outcomes based on
how they affect long-term outcomes of interest. To this end, we aggregate teacher effects
using estimates of the differential impact of elementary school gains in math and ELA on
lifetime earnings from Chetty et al. (2014b). Back of the envelope calculations suggest that
over three years the allocation of teachers that maximizes present-valued lifetime earnings
would generate over $4000 in present valued earnings per student or over $83.7 million in to-
tal.> Whereas interventions in the education literature have often focused on math scores for
a variety of reasons (Chetty et al., 2014a; Delgado, 2022; Bates et al., 2022; Ricks, 2022), our
contribution is accounting for the separate marginal effects of math and reading outcomes,
which generates 34% larger wage impacts (value-added of $21 million) relative to focusing
only on math.

Third, these results have implications for the discussion of using value-added in teacher
(and doctor and hospital) compensation and extend our understanding of the welfare im-
plications of such policies. Motivated by the large earnings gains from reallocations, we
explore the welfare implications of using lump-sum transfers to compensate teachers for the
possibility of being reallocated. We consider varying sizes of bonus payments to all teachers
and find enormous gains measured in the marginal value of public funds (or MVPF (Hen-
dren and Sprung-Keyser, 2020)). The MVPF of bonuses in the district-wide reallocation
is infinite for up to $8300 per teacher (roughly 14% of salary for SDUSD teacher with 10
years of experience). For within-school-grade reallocations—which have smaller gains but
which should be all but costless to teachers—we find that the MVPF is infinite for bonuses
of up to $2200. These ideas combine insights from two literatures on teacher labor mar-
kets: one focusing on dismissal (Hanushek et al., 2009; Staiger and Rockoff, 2010; Chetty
et al., 2014a), but sometimes ignoring teacher supply decisions (as pointed out in Rothstein,
2010) and the other characterizing teacher demand (Johnson, 2021) but sometimes ignoring
teacher impacts on students (as addressed in Bates et al., 2022, where both are combined).
Our contribution is characterizing the welfare effects of policies that use teacher value-added
but compensate teachers for the possible disutility of the resulting allocation.

Taken together, our results highlight the first-order importance of considering hetero-
geneity in empirical welfare analysis. In our theory we show how the gains possible from
allocations based on heterogeneous effects may be much larger than those based on means
only. We document this empirically in our setting where considering just one dimension of

heterogeneity increases test score gains by 34-97% relative to only using the standard value-

3Here present valuation is discounted at 3% following back to age 10 following Krueger (1999) and Chetty
et al. (2014b).



added measure. While the critical role of comparative advantage has been acknowledged for
centuries, our contribution to welfare theory is in connecting treatment effect heterogeneity,
comparative advantage, and social preferences. These connections capture and formalize
the growing understanding that heterogeneity is a key consideration for allocating scarce
resources according to a social objective by means of targeting. This has been explored
theoretically (Kitagawa and Tetenov, 2018; Athey and Wager, 2021) and is reflected in a
recent explosion of empirical inquiry about targeting treatments as varied as social safety
programs (Alatas et al., 2016; Finkelstein and Notowidigdo, 2019), costly energy efficiency
interventions (Ito et al., 2021; Ida et al., 2022), promoting entrepreneurship in developing
countries (Hussam et al., 2022), and even resources to reduce gun violence (Bhatt et al.,
2023). Our results suggest that in these settings and others ignoring heterogeneity may
have serious welfare ramifications and that considering heterogeneity in effects and social
preferences presents a clear path forward for future welfare analyses.

This paper is organized into 6 sections. Section 2 introduces our framework for welfare
and value-added with the implications of heterogeneity. Section 3 contains our estimation
procedure and a description of value-added in the San Diego Unified School District. Section
4 leverages our welfare theory to explore the reallocation of teachers to classes and measures
the welfare gains from using information about heterogeneity. Finally, Section 5 draws the

pieces together to explore the implications for welfare and Section 6 concludes.

2. A Welfare Theory of value-added

This section formalizes the implications of estimating mean-oriented statistics for use in
welfare analyses and the benefits of estimating heterogeneous impacts. We begin by showing
how a welfare-theoretical framework can allow a social planner to aggregate over multidi-
mensional policy impacts on a heterogeneous population. Second, we show how relying on
average effects and average welfare weights can lead to biased welfare estimates. This bias
has two sources: average treatment effects have imperfect external validity in different allo-
cations (for example assigning teachers to classes with different compositions), and average
welfare weights ignore heterogeneous gains to groups with different welfare weights (for ex-
ample, differential valuation of an identical test-score increase for struggling versus advanced
students). Third, we show how measuring heterogeneity along key dimensions can minimize
the bias. Finally, we show graphically how correcting this bias leads to better policy opti-
mization through comparative advantage and targeting interventions towards the recipients

with the highest marginal benefit.



2.1 Welfare with Heterogeneity and Multidimensionality

Consider a social planner selecting a policy p € P. This policy could be assigning teachers
to classes (our application), defining an eligibility threshold for a means-tested program like
health insurance, or choosing between various public works projects. The welfare under
policy p is a function of the lifetime utilities U’ and welfare weights ¢! of each person i

under each policy p. With a population of size n welfare is

n

Wr = LUy
i=1
If the policy p has heterogeneous effects on utility for different people, using welfare weights
¢! is a long-standing method to allow the social planner to aggregate over individuals and
recover a scalar measure of welfare.

In practice neither policymakers nor economists observe lifetime utility directly. Instead,
they usually rely on observable outcomes Y like earnings, health outcomes, or test scores as
proxies. We let the social planner evaluate policies using a “score function” S? = s(Y”, X;)
which produces an individual-level score for the policy based on observable outcomes and
characteristics. Note that while this score could represent any social objective, identifying
the expected lifetime utility or earnings would be particularly useful in many cases (see the
related work on surrogate indices by Athey et al., 2019). Just as the welfare weights allow
the social planner to aggregate over the heterogeneous effects of the policy, the score function
allows the social planner to aggregate over the multidimensional effects of the policy.

Under this setup, a policymaker can evaluate each policy p based on observable out-
comes. Assuming an individuals’ outcomes Y;” only impact their own utility and weights,

the expected change in welfare from the status quo (p = 0) to policy p is
AWP ="y, (SE, SYAS? (1)
i=1

where v; (S, S?) is a new welfare weight and AS? is the effect of policy p on individual 4’s
score. The weight +? reflects the average welfare gain from marginal score changes over
[S?S?P], incorporating the change in expected utility and the relevant welfare weights, ¢f.
A detailed explanation of this derivation can be found in Appendix B.1.

Unfortunately, estimating this welfare metric has a major complication: The effects of the
policy AS? and the proper weights 77 are both individual specific. The impact of the policy
on the score, AS?, and the impact of the score on lifetime utility, 4¥, may both vary from

student to student. Even though these individual-level measures provide a more accurate



theoretical framework, using individual welfare weights and individual outcomes to assess
policy is typically not feasible. Because of this limitation, policies are often evaluated with
aggregate measures. We now characterize the bias that this aggregation produces and how

estimating heterogeneous effects can reduce that bias.

2.2 Bias from Ignoring Match Effects or Individual Welfare Weights

Empirical analyses often simplify the weights and treatment effects to means in order to
measure welfare. This approach multiplies an estimate of the average treatment effect of a
policy ATE" with the average welfare weight for the impacted population (see intuition in
Hendren and Sprung-Keyser, 2020). Assuming the average welfare weight is known E[y?] =
%Z?:l 7:(S?,S8?), this approach allows for two sources of bias.* First, because the true
ATEP is rarely known (and never known ez ante), other estimates such as rules-of-thumb
and estimates from different times or populations are used. For example, in the value-added
setting a teacher’s average impact on a different class in the past is often used to infer their
impact on another class in the future, introducing bias. Second, as shown in Appendix
B.2, the welfare weights that convert a true AT E? into welfare are a function of the joint
distribution of the individual-level treatment effects and individual welfare weights. By
instead using the simple population mean E[y?], more bias is introduced. In general, these

simplifications lead to a biased measure of welfare:

Theorem 1. If welfare is estimated using the product of an average outcome from a different
population ATE and an average welfare weight E[y?], then the estimate will contain the

following bias relative to the more general benchmark in Equation 1:

AWP

Average Bias,;p = — E[VP]A/T\E

— E[y"] <E[AS”] - A/T\E) + Cov(~?, ASP)
Proof in Appendix B.3

With the equation for the bias in hand, we see that these common simplifications lead to
two sources of bias. First, one source of bias comes from the difference in the expected change
in our outcome of interest, and the ATE estimate used. While these statistics could differ
for any reason relating to the external or internal validity of our estimate, our paper is most

interested in a specific concern with external validity: Whether averages of heterogeneous

4In practice the average welfare weight needs to be estimated as well, which could introduce a third source
of bias, so we assume that policymakers have prior knowledge about the average welfare weight.



effects apply in different populations. For example, if teachers have heterogeneous impacts
on students, then estimating the average treatment effect on their current class will not
give an unbiased estimate of their average impact on a class of very different students. If,
for example, we change the class composition to better match the teacher’s comparative
advantage, their average impact will increase. A more formal explanation of this impact can
be seen in Appendix B.4.

Second, using the population average welfare weight ignores any covariance between
welfare weights and treatment. While not the case in general, there are some situations
where the covariance would be zero. For example, when the effects of a policy are uniform
(or random) there can be no covariance. Perhaps more relevant to policy the covariance will
also be zero when there is no variation in welfare weights among the impacted population.
This may approximately hold, for example, for targeted programs like SNAP, Medicaid, and
TANF. The covariance is likely to matter in many other settings. For example, in our setting
teacher reassignment has the potential to disproportionately help low-performing students.
If low-performing students have higher welfare weights, the covariance term in the bias would

be positive and means would understate the value of the reallocation.

2.3 The Case for Estimating Heterogeneity

Measuring heterogeneous impacts along key dimensions can lower the bias outlined above.
By choosing features that explain the most variation in welfare weights and policy impacts,
we may be able to lower the bias significantly. In practice, this method requires estimates
of the conditional average treatment effect and welfare weights by subgroup (C’@x} and
E[y?|z]) rather than using average treatment effects and weights. Incorporating this, the
bias can be characterized in the following way:
Theorem 2. If mean welfare is estimated using the weighted mean of a conditional average
treatment effect C@x} and a conditional average welfare weight E[v?|z] weighted by the
fraction of the population with characteristic x, P,, the mean welfare estimate will contain

the following bias:

AWP

n

Average Bias; rp = - Z PxE[7p|$]01@$)

X

- Z P, (Cov(vp, ASP|z) + E[yP|z] <E[A5p|$] - C@@))

If the features in x are chosen carefully, both portions of the bias can be lowered while still



being identifiable. To be more precise, we will again consider the two bias terms separately
and compare them to the unconditional counterpart in Theorem 1.

First, consider the covariance terms. The covariance term in Theorem 1 has been replaced
by the weighted sum of conditional covariance terms. Using the law of total covariance, we

can see that this portion of the bias will be smaller after conditioning, when

> P.Cov(y”, AS”|z)| <|> P.Cov(y”, ASP|x) + Cov(E[y*|a], E[AS|z])| = |Cov(y?, ASP)]
X X

2)

This means that when the average within group covariance between v* and AS? is smaller
than the total covariance, the bias will be reduced. The middle term breaks up the total
covariance into two parts. The first term is the within group covariance, and the second
is the covariance of the group means. To better connect these terms to applications, it is
helpful to think through cases. First, if both of these terms are the same sign, the condition
will be met. Consider a case where we condition on pre-test scores, like our paper, but
race also impacts v and is not conditioned on. If the gains from a teacher allocation are
positively (or negatively) correlated with both the welfare weights on both pre-test scores
and race, the condition is met. Now suppose they are opposite signs. That is, the gains are
positively associated with test score and negatively associated with the welfare weights on
race or visa-versa. In this case, the inequality may or may not be satisfied. It will still be

satisfied when

24| " P,Cov(v?, ASP|z)| < |Cov(E[y”|x], E[AS|z])] (3)

Put simply, this holds when the within group covariance is small relative to the group
mean covariance. In keeping with our example, the within group covariance would be small
if the unconditioned feature, race, either does not impact «” very much after conditioning on
pretest scores, has little association with AS? after conditioning on pretest scores, or their
relationship happens to be randomly distributed after conditioning on pre-test scores. The
group mean covariance will be large if the conditioned factor, pre-test-scores, plays a large
role in the relationship between A7 and ASP. For example, suppose pre-test groups with
large welfare weights also see large test score gains because teachers are sorted according to
their comparative advantage along the pre-test dimension.

Now to consider the second term. As before, this could come from any external or internal

—

validity issue with CAT E(x), but we focus on the bias from population changes interacted

10



with heterogeneous treatment effects. If a teacher has different impacts on different types of
students, for example, and the class composition changes, their average impact will change.
By conditioning on the observable, x, we can adjust for compositional and treatment effect
differences over X. The new estimator takes a teacher’s average impact on group z and
weights that impact by the composition of their new class. The remaining bias, then, would
need to come from differences in treatment effects along other dimensions and variation in
composition within a group x across classes. Pulling out the terms, this will be smaller when
the following holds.

> P.Ele) (E[ASY]a] - CATE(z)) < E[y?] (E[AS") - ATE) (4)

A more formal treatment can be seen in Appendix B.5.

Putting these ideas together, there are two special cases that are helpful to think through.
first, the case where welfare weights really only depend on z. For example, if x is pretest
scores and the policymakers want to treat every student with the same pre-test score equally.
In this case, the first term goes to zero since there is no covariance within test score groups.
There could still, however, be differences in treatment effects and class composition within
a test score group z. For example, if teachers have differential impact by race (Delgado,
2022). This would lead to a non-zero value for the second term. If there is no heterogeneity
within x, either because the treatment effects are the same or the class compositions are
the same within z, the second term would also be zero and we would have a completely
unbiased estimator. These special cases help to highlight how the first term is driven by
the policymaker’s re-distributive preferences while the second is driven by the heterogeneous
treatment effects and compositional differences between sup-populations.

Given these differences, it is worth noting that there is no reason one could not condition
the welfare weights and the estimates on different subsets of X. for example, E[+P|x]
OA?E‘\(XQ). It might be the case that a variable is not meaningful in the welfare weight,
but is a factor in estimating an accurate treatment effect. While this could be done, we focus

on the case where the same variable, pre-test scores, is being considered for both.

2.4 Graphical Intuition of the Welfare-Relevant Components

Having illustrated how to reduce bias for welfare estimates of a given policy intervention,
this section considers the welfare gains from decreased bias when comparing different policies.
We present a simple example with two groups to show how heterogeneous estimates allow
welfare improvements relative to evaluations based on means. For simplicity of exposition,

we assume that all effect heterogeneity and heterogeneity in social preference relates to these
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two groups. This highlights three channels for gains from reallocations—some of which are
only possible by estimating heterogeneity.

We illustrate these three channels for improving welfare in Figure 1. The two axes of
Figure 1 depict the average change in the score function for two groups. In our example it
would depict the average change in math scores for lower- and higher-scoring students. Con-
necting these two axes are two production possibility frontiers (PPFs—depicted as curves).
Allocations between the origin and “PPF: AT'E” are possible by using information about
mean effects that capture absolute advantage—such as a teacher’s average test-score value-
added on students.® In our setting this would mean assigning teachers with higher overall
value-added to larger classes, and teachers with lower value-added to smaller classes. Al-
locations within the “PPF: CATE” are possible by using information about heterogeneous
effects that capture both absolute and comparative advantage. In our setting this would
mean also assigning teachers to classes with larger shares of the group they have a compar-
ative advantage in teaching. This PPF is at least weakly dominant because it allows for
additional gains from matching teachers to classes in ways that leverage their heterogeneous
value-added across student groups.

Now consider a policymaker with indifference curves corresponding to the dotted lines.
The slope of these indifference curves indicates the relative preferences given to one group
versus the other. In this example, the slope is higher than -1, indicating that the policymaker
places greater weight on group 1. Figure 1 presents the status quo and three possible
reallocations (a white box and colored circles) and their corresponding welfare (indicated
with dashed indifference curves).

First, a policymaker trying to maximize test scores (despite having re-distributive goals)
using standard value-added measures can experience welfare gains from the absolute advan-
tage of teachers. Figure 1 represents this reallocation as a movement from the white box to
the yellow circle on PPF: AT E with welfare gains corresponding to a move from Wo to VNV16.
This movement reflects the gains from making allocations based on absolute advantage.

Second, a policymaker maximizing test scores with heterogeneous estimates of teacher
value-added (but still ignoring their re-distributive preferences) can experience further gains
from the comparative advantage of teachers. With heterogeneous estimates, the policy mak-

ers can assess how a teacher would impact students in each group in addition to students

5Technically, a valid value-added estimator is only a consistent estimate for this parameter as the set of
students a teacher teaches approaches a representative sample.

6Note that, in our case, for these gains to be non-zero, two things must be true: it must be the case that
(1) some classes have different sizes, and that (2) some teachers have different value-added scores. If these
conditions are met a policymaker would expect to increase the scores for students in both groups by assigning
higher-value-added teachers to the larger classes. Such reallocations can lead to meaningful impacts in the
real world setting we use, where class size averages about 27 with a standard deviation of about 6.
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Figure 1: Absolute Advantage, Comparative Advantage, and Social Preferences Contribute
to Welfare
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Note: This figure illustrates the welfare gains allocations using heterogeneous effects and welfare weights.
The two axes present the outcome score of interest, S, for individuals of two types. The graph contains
two production possibility frontiers and some indifference curves. The interior production possibility fron-
tier is attained by allocations made with the constant-effects model, like traditional value-added measures.
These mean estimates could enable welfare gains from allocations based on the absolute advantage (possibly
weighted by social preferences). The second, dominant frontier is attained by allocations using information
about effect heterogeneity and, thus, comparative advantage. The indifference curves show the welfare value
of four allocations: (1) the status quo, (2) the average-score maximizing allocation using mean effects, (3) the
average-score maximizing allocation using heterogeneous effects, and (4) the welfare maximizing allocation
using heterogeneous effects.
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on average. This knowledge would allow them to reallocate teachers based on absolute and
comparative advantage, indicated as a movement from the white box to the orange circle on
PPF: CATE with welfare gains corresponding to a move from Wo to W2.7 Compared to the
allocation on PPF: ATE, the gains from Wi to W, reflect the additional gains from making
allocations based on comparative advantage.

Finally, a policymaker can produce further welfare gains by directly considering their
distributional goals. In our example, the policymaker wants to focus on lower-scoring stu-
dents for educational remediation (although a focus on higher-scoring students, perhaps for
prestige, is also possible). If this is the case, both score-maximizing allocations are sub-
optimal. This loss is visualized in Figure 1 where the indifference curves at Wl and Wz
are not tangent to either PPF. As such, the policymaker can increase welfare by trading off
the possible test-score gains for one group against gains to the other groups. The optimal
consideration moves them to the red point, with the largest welfare of Wg.

Although each of these pieces could generate large welfare gains in theory, whether there
are meaningful gains from estimating heterogeneity in practice remains an empirical question.
For example, if teacher effects are homogeneous or highly correlated there would be no gains
from making allocations based on comparative advantage. Furthermore, even if there are
differences or distributional objectives, if the status-quo allocation already takes them into
account, there would be no gains from reallocations since the welfare gains have already
been captured. The remaining sections of the paper measure the amount of heterogeneity

in teacher impacts and describe the welfare effects of possible reallocations.

3. Estimating Heterogeneous value-added for Teachers in San Diego Unified

Having established how measuring effect heterogeneity could be useful for informing
welfare and policy, this section sets the groundwork for determining to what extent hetero-
geneity in teacher value-added matters in practice for the allocations of teachers to classes
in elementary school. To that end, we describe the data from the San Diego Unified School
District, present our estimation strategy for value-added, and summarize patterns in value-
added—including the extent of comparative advantage and how it is at play in the status

quo allocation of teachers to classes.

"Note that, in our case, for these gains to be larger than the gains from absolute advantage, two more
things must be true: it must be the case that (1) some classes have different compositions of student types,
and (2) that some teachers have different value-added on each type of student. If these conditions are met
a policymaker would expect to further increase the scores for students in both groups by assigning better
matched teachers to classes.
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3.1 Background and Administrative Data

To consider socially optimal allocations of teachers to classes, we use administrative
data on the universe of students attending schools in the San Diego Unified School District
(SDUSD). For our main analyses we focus on 1,816 teachers who are the main instructors
in third, fourth, or fifth grade classes in the 2002-03 through 2012-13 school years.® We link
all teachers to their students each year and we restrict our attention to students with test
scores in both English Language Arts (ELA) and math for two consecutive years. This leaves
us with 196,452 student-year observations in 10,447 class-year groups. The administrative
data also contain relevant information about student demographics and academics as well
as long-term outcomes. We provide more descriptive statistics and information about the

current allocation of teachers to classes in Section 3.4.

3.2 Estimation Overview

We use the data from San Diego Unified to evaluate the importance of estimating het-
erogeneity in optimally assigning teachers to classes. While there are many dimensions over
which we could estimate heterogeneous effects, we focus on lagged student scores. Specifi-
cally, we estimate the value-added of each teacher on the Math and ELA scores of students
with below-median scores (lower-scoring students) and students with above-median scores
(higher-scoring students). Our theory suggests that to be welfare improving the dimension
we choose should capture a lot of the variance in impacts and be relevant to the social plan-
ner. We estimate heterogeneity along the achievement distribution because it meets these
criteria.

First, measuring heterogeneity in teachers’ effects on lower- and higher-scoring students
captures the most salient dimension of instructional heterogeneity. This intuition is not just
based on anecdotes; indeed, the large education literature about instructional differentiation
suggests that teaching lower- and higher-scoring students requires very distinct skills. See for
instance the large literature on differentiated instruction (see Betts, 2011; Duflo et al., 2011;
Tomlinson, 2017, for review and examples). Furthermore, while many papers have found
evidence of “match effects” between students and teachers sharing observable characteristics
like gender or race (Dee, 2005; Delhommer, 2019), results from Delgado (2022) shows that
these match effects only explain part of the heterogeneity in teacher effects on students
of different genders and races. This suggests that focusing on demographic match may
be overlooking something key. We suggest that the most relevant dimension is related to

differentiation along the test-score distribution.

8We limit to these years because the state-mandated tests were stable and comparable over these years.
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Second, policymakers often expressly identify achievement as a dimension over which
they have heterogeneous valuations of gains. For example, quintessential US policies like the
federal No Child Left Behind Act of 2001 directly focused on accountability for and profi-
ciency among lower-scoring students. The stated goal was to focus on raising the lower bound
of student test scores, calling for corrective action based on whether the lowest performing
groups met state standards.” At the same time, many national, state, and local policies
promote gains to lower-scoring students while expressing nondiscriminatory, identical pref-
erences for students of different genders, races, and socioeconomic statuses conditional on

their achievement.

3.2.1 Standard value-added

For our traditional value-added estimates we follow the approach in Chetty et al. (2014a)
and implement it with associated Stata package (Stepner, 2013). The details are presented
in Appendix C, but the general approach has three steps. First, we estimate the effects of
student i’s characteristics in year ¢, X;;, on test scores in subject s, S; s, in a regression of

the form:
z,s,t ﬁs it + ui,s,t

Second, we obtain the average of the residuals implied by S5 by class and year:

rlD DRI CEYS

zj(zt)

Finally, we estimate leave-year-out (jackknife) measures of teacher impact by predicting A%

with the residuals in all other years.
%g’t = 'l/;sAg’_t (5>

The main assumption necessary to interpret these estimates as causal effects is that class-
level shocks and idiosyncratic student-level variation are conditionally independent and a
stationary process (given the controls, X;;). It must also be the case that the variance in
teacher value-added is stationary (as outlined in Chetty et al., 2014a, —again formal details
are in Appendix C).

To the end of establishing this conditional independence, we follow the controls of Chetty

et al. (2014a), documented to have unbiased estimates of teacher effects. In our setting X,

9The fact that these policy objectives often find broad cross-partisan support could lead one to conclude
that all policymakers have somewhat egalitarian preferences and that disagreements are not questions of
direction but only magnitude.
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includes cubic polynomials in prior year test scores in math and ELA, those polynomials
interacted with student grade level, as well as controls for ethnicity, gender, age, the lagged
percentage of days absent, indicators for past special education and English language learner
status, cubic polynomials in class and school-grade means of prior test scores in both subjects
(also interacted with student grade level), class and school means of all the other covariates,

class size, and grade and year indicators.’

3.2.2 Heterogeneous value-added

For our estimates of heterogeneous value-added, we follow the approach pioneered in
Delgado (2022) and applied in Bates et al. (2022), implemented with extensions we made
to the Stepner (2013) Stata package. The details are also presented in Appendix C, but
the general approach also has three steps. The first step is identical, with the addition of
indicators for group g to X;; We then obtain the average of the residuals implied by 3, by
class, type, and year:

Aé’fs = % Z [Si,s,t - Bin,t
W9 5.7 (i) =d,9i=g
Finally, we estimate leave-year-out (jackknife) measures of teacher impact by predicting A’

with the residuals in all other years using the observed auto-covariance.
Tyt = g AL (6)

Here the main assumption necessary to interpret these estimates as causal effects is
that, class-type-level and student-level variation are conditionally independent and stationary
processes (as derrived in Delgado, 2022, —again formal details are in Appendix C). Note that
we differ from Delgado (2022) in one way: We impose a zero-covariance assumption about
the idiosyncratic teacher value-added components across groups, similar to the assumptions
implicit in the measurement of value-added across subjects in both Chetty et al. (2014a) and

Delgado (2022) for internal consistency.

3.3 Heterogeneity Highlights the Importance of Comparative Advantage

We use these techniques to estimate the heterogeneous effects of 1,816 teachers on 109,125

lower-and higher- scoring students from 127 elementary schools in SDUSD. These teachers

0The only notable difference from the controls in Chetty et al. (2014a) is their inclusion of information
about free and reduced price lunch, which we omit in our research because of restrictions that SDUSD imposes
on researchers’ use of this information due to their perception of federal regulations on use of student level
subsidy information.
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taught grades 3-5 in the 2002-03 to the 2012-13 school years. In this section, the mean
value-added is normed to zero for each group, reflecting both the economic intuition that
for the average student the “outside option” for the teacher she or he has is the average
teacher and the econometric identification argument in Chetty et al. (2014a) implicit in our
identifying assumptions.

We depict the main value-added results in Figure 2. This Figure reports two scatter
plots—one for ELA and one for math—where each point represents one teacher. The teachers
value-added on higher-scoring students is plotted on the y-axis over their value-added on
lower-scoring students on the z-axis. Each plot also presents the correlation coefficient
between the value-added on the two student groups as well as a slope coefficient for the line
of best fit between the two.

Figure 2: value-added Varies Significantly within and across Teachers

ELA Scores Math Scores

Value Added to Above Median Students
Value Added to Above Median Students
o
|

T T T
-1 =75 -5 -.25 0 25 5 .75 1 -1 =75 -5 -25 0 .25 5 .75 1
Value Added to Below Median Students Value Added to Below Median Students

Note: This figure shows our heterogeneous estimates of teacher value-added on both English Language Arts
(ELA) and Math test scores. Each dot represents one teacher-year estimate of value-added on high- and
low-scoring students. The correlation coefficients is for the entire population stacked by year. The dashed
line shows the line of best fit with the slope reported. For reference a line with slope one is plotted in the
background.

Visual inspection of Figure 2 illustrates the differences within and across teachers, sug-
gesting we should reject the standard “constant effects” model of value in favor of one with
appreciable comparative advantage. Differences across teachers, or absolute advantage, can
be seen by comparing teachers along the gray 45-degree line. Teachers above and to the
right generate larger testing gains compared to teachers below and to the left. Comparative
advantage can also be seen visually. Teachers with dots above the gray 45-degree line have

a comparative advantage in teaching higher-scoring students, and teachers with dots below
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that line have a comparative advantage in teaching lower-scoring students. The size of the
average comparative advantage is large: 53% the size of the cross-teacher standard deviation
in standard teacher value-added for ELA and 48% for math.

The differences within and between teachers are what will generate gains for the reallo-
cation exercises. We estimate that teacher value-added to higher- and lower-scoring students
is correlated at 0.7 for ELA and 0.8 for Math. The fact that this correlation is less than
one allows for gains from allocating teachers by comparative advantage. Even though the
correlations are high, there are still significant margins for gains. For comparison, our cross-
group correlations are lower than those by socioeconomic status (0.9 for math in Bates et al.,
2022) but larger than those by race (0.7 for math and 0.4 for ELA in Delgado, 2022). Fur-
thermore, our theoretical framework suggests there is value in combining information from
multiple outcomes. In that light, it is also worth noting that the cross-subject correlations
are lower. For example, Figure A.1 shows that the cross-subject, cross-group correlations
are both around 0.6, suggesting even larger gains from cross-subject comparative advantage.

It is also interesting to note that Figure 2 reveals that value-added to math is much
more dispersed than value-added to ELA. This is consistent with evidence from similar
value-added papers (e.g., Chetty et al., 2014a). Our results further show that teachers’
value-added is more highly correlated across achievement groups for Math than for ELA.
This is also consistent with absolute advantage being more important and variable with
Math teaching than with ELA teaching.

3.3.1 Validation and Robustness

Although these results suggest striking patterns of comparative advantage, our reallo-
cation exercises and welfare estimates would be meaningless if these estimates reflected id-
iosyncratic noise rather than persistent heterogeneity within and across teachers. Although
the use of shrinkage assuages these concerns, we also perform three additional exercises
demonstrating the stability and credibility of our heterogeneous estimates. Each result re-
inforces our confidence that the value-added scores are fitting systematic patterns in causal
differences and not just idiosyncratic noise.

First, Appendix Figure D.6 reports patterns of persistence over time. For example, over
40% of teachers have a comparative advantage for teaching one group of students in all
years, and the year-to-year correlation is between 0.78-0.90 for all estimates. Additionally,
Appendix Figure D.7 leverages the longitudinal nature of our data to show that heteroge-
neous value-added estimates carry the same information about long term outcomes as tradi-
tional value-added estimates (Chetty et al., 2014b). These results show striking similarities

between the effects of our estimates and traditional value-added. Furthermore, estimates
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for each student group are no less precise suggesting that the variance is loading on the

dimension of heterogeneity we specified.

3.4 The Status-Quo Allocation of Teachers and Students

This section shows how teachers are allocated to classes in the status quo, whether this
allocation is efficient or equitable, and presents descriptive evidence that there may be gains
from reallocation. Figure 3 presents a binned scatter plot of value-added for each subject
over the share of lower-scoring students for that subject. Absolute advantage is reported as
the average of teacher value-added on lower- and higher-scoring students, and comparative

advantage is reported as the difference.

Figure 3: Teacher value-added Only Varies Somewhat with Class Composition
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Note: This figure shows how our heterogeneous estimates of teacher value-added on both English Language
Arts (ELA) and Math test scores relate to class composition. The panel on the left shows teacher absolute
advantage (average of value-added on lower- and higher-scoring students) and the panel on the right shows
the comparative advantage (difference of value-added on lower-scoring students minus value-added on higher-
scoring students). both panels plot the ventiles of value-added (measured in teacher standard deviations in
absolute advantage) over the share of students who are lower-scoring (i.e. have below-median lagged test
scores).

These patterns suggest that classes with larger shares of lower-scoring students do not
tend to have teachers with substantially different absolute or comparative advantage. Overall
teachers with a higher average value-added are somewhat more likely to sort into classes with
higher average test scores at baseline. This suggests the current allocation is inequitable,
but the effects are small: the slope only predicts that students in a class with an additional

lower-scoring student in one subject will experience 0.001c smaller gains in that subject on
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average. Interestingly, there is some evidence that this slightly inequitable sorting may be
according to absolute advantage. Appendix Figure A.2 shows analogous results by class
size revealing that better teachers teach in slightly larger classes, suggesting some allocative
efficiency from sorting better teachers in bigger classes, but again the differences are small.
These two patterns are likely connected as larger classes tend to be in more affluent schools
with higher average test scores.

There is also no clear evidence of sorting on comparative advantage. Figure 3 also
depicts the difference in value-added to lower- and higher-scoring students along the class test
score distribution. In math, teachers who are comparatively better at teaching lower-scoring
students are sorting into classes with slightly larger shares of lower-scoring students, but the
opposite is true in ELA. Neither of these patterns is economically large. The differences by
class size are similarly signed but even smaller (see Appendix Figure A.2). The combination
of heterogeneity in teacher effects and the absence of significant sorting in the status quo
suggest large gains from reallocation.

The current allocation of students to classes also suggests that there will be gains from
reallocations. Variance in class size and class composition will both increase the gains from
reallocation. Appendix Table A.1 reports the standard deviations of class size and the
share of higher-scoring students in math and ELA at a district-wide level and within schools
(controlling for variation by grade and year), revealing ample variation even within school.
This suggests that although reallocating teachers across schools necessarily allows for bigger
test-score gains, much of the potential gains may be achievable by reallocating teachers

within their current school and grade.

4. Efficiently Allocating Teachers to Classes

Although our general theoretical framework could be applied in many settings, with
estimates of the heterogeneous teacher effects we now use our theory to consider the public
service provision problem of allocating teachers to classes. This section defines the allocation
problem, presents the gains possible under the optimal allocations, and compares the gains
obtained from using our estimates relative to using standard value-added measures.

We parameterize the social objective w using higher- and lower- scoring students to
compare different allocations and find the relevant optima. Let J : (i,t) — j be an allocation
function, telling us which teachers teach each student in each year. We define the following

optimization problem for weighted test score gains in a given subject (s subject subscripts
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suppressed):
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where wy, € 0.0, 1.0] represents the weight on lower-scoring students in the social objective,
L;; is an indicator for whether student ¢ is lower-scoring, and %}; and %i are our estimates of
heterogeneous value-added. The set ¢ is the social planner’s choice set made up of feasible
allocations. In our setting, we focus only on reallocating teachers to existing classes in the
grade they actually taught without changing the composition of those classes in any way.
We do this to avoid introducing peer-effect biases into our welfare estimates. The single-w
parameterization of welfare imposes linear indifference curves that trade off performance
for lower- and higher-scoring students where the weight on each group reflects the degree
to which the social planner wishes to target gains to one group of students relative to the
other. It also assumes that the social planner only values gains to students in the given
subject—something we will relax in Section 5.

This allocation problem captures three distinct trade-offs that have been mentioned in the
value-added literature but never fully addressed together. First, the optimal allocation must
account for the comparative advantage of teachers because of differences in class composition
(as pointed out in Delgado, 2022). Second, the optimal allocation must also account for the
absolute advantage of teachers because of differences in class size. This crucial detail has been
accounted for at the school level (see Bates et al., 2022), but class size and class composition
vary both across and within schools. Because of these differences, we are interested in both
within-school and district-wide reallocation exercises. Finally, the optimal allocation must
account for possible heterogeneity in the social value of gains to different types of students—
something unique to our paper.

We solve this allocation problem for two sets of possible reallocations: within-school and
district-wide. For both, we restrict ¢ so that every year the students in each class and the
grade assignments of each teacher do not change. We leave class composition fixed so that
changes in within-class peer effects do not contaminate the outcomes in predicted counter-
factual allocations. For the within-school reallocation we further require that teachers do not
change schools. Whereas this within-school problem can be solved easily by iterating over

01830 alloca-

school-grade(-year) cells, the district-wide reallocation problem has over 3 X 1
tions to search over. Because the optimal policy depends on both absolute and comparative
advantage when both class sizes and class compositions vary, this problem cannot be solved
by simply assigning teachers to classes with large shares of students they have a comparative

advantage in teaching or simply assigning the best teachers to the largest classes. The social
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planner problem in equation 7 can be re-characterized as a mixed-integer linear programming
problem and solved using the COIN-OR Branch and Cut solver implemented by the Python
package Pulp (see, for example, DeNegre and Ralphs, 2009).

4.1 Allocations Incorporating Heterogeneous Impacts Increase Test Scores

We create a production-possibility frontier (PPF) for the gains to each group from the
within-school and district-wide reallocations. To do this, we solve the optimization problem
in Equation 7 for 101 different values of the social weights w; ranging from 0.0 to 1.0. We
then recover the average value-added received by lower- and higher-scoring students and
calculate the gain beyond the status quo. By comparing the optimal gains attained under
different weights, this analysis characterizes how reallocation gains to lower-scoring students
trade off with those to higher-scoring students, creating the PPF's.

We depict these production-possibility frontiers in Figure 4. We plot the PPF for change
in ELA scores on the left and Math scores on the right. Each point presents the average one-
year change in lower-scoring students’ test scores in the optimal allocations (on the y-axis)
over average change for higher-scoring students (on the x-axis), all relative to the status quo
(noted with the square marker). Allocations that would reduce a group’s scores relative to
the status quo are denoted with negative numbers. Allocations above and/or to the right of
the status quo are preferred by the social planner. The lighter (blue) PPF denotes the within-
school reallocations and the darker (red) PPF the district-wide reallocations. Unsurprisingly,
the district-wide reallocations produce gains that are further out in both dimensions.

Figure 4 reveals three striking patterns. First, there are large gains possible from both
reallocations. For example, in the district-wide reallocation a social planner seeking to raise
average scores (i.e., a utilitarian planner with wy = wy = 0.5) could increase both lower- and
higher-scoring students’ scores by 0.04 student standard deviations. Gains from math are
even larger: 0.04 for lower-scoring students and 0.07 for higher. Similarly, the simpler within-
school reallocation could raise ELA and Math scores for both groups by more than 0.01
standard deviations. Recalling that these represent one-year gains, a policy that optimally
allocated teachers could increase average math scores by 0.120 in ELA and 0.17¢ in math.!!
These are large gains—almost identical to the gains that would result from improving the
value-added of every teacher in the district by one teacher standard deviation (but retaining
status quo assignments) for one year, and triple the gains from proposed teacher screening
programs that “deselect” (i.e., fire) teachers with the lowest 5% standard value-added (as
considered in Hanushek et al., 2009; Hanushek, 2011; Chetty et al., 2014b).

'Where the annual means and standard deviations scores are normalized by those in the entire state of
California.
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Figure 4: Optimal Allocations Can Create Large Gains to High- and Low-scoring Students
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Note: This figure shows the test score gains from optimal allocations relative to the status quo. Two
production possibility frontiers are presented, one for reallocating teachers within school-grade cells and
one reallocating teachers across schools (still within grade). Each PPF is constructed by finding the optimal
allocation given relative weights on lower- and higher-scoring students [0.0,1.0] by solving the optimal mixed-
integer linear programming problem. Gains are reported as average changes in scores measured in student
standard deviations per school year that the reallocation is performed.

The second pattern visible in Figure 4 is that the curvature of the PPFs demonstrates
the value in explicitly considering the distributional goals of a policymaker. These gains are
dependent on the extent to which distributional goals deviate from the mean scores objective
but are large for more extreme distributional goals.

We compare the total welfare achieved under an optimal allocation for a given set of
welfare weights (the optimal point on a PPF in Figure 4 for a given indifference curve) to
the test-score maximizing allocation (the black diamond mark on the relevant PPF). To
normalize these welfare gains, we construct an “Atkinson index” type measure such that
the social planner would be indifferent between the optimal allocation and an allocation
where every student experienced a given test score gain. Figure 5 shows the difference in
this Atkinson index for each allocation on the comparative advantage frontier compared to
the test-score maximizing allocation. As expected, the gains are small for similar weights
and grow as the social planner favors one group more or less. At the tail ends, where the
policymaker favors one group almost exclusively, the gains for the district-wide (within-
school) reallocations are 85% (20%) larger in math and 50% (35%) larger in ELA. Of course,
the true weights for policymakers may not be near these tails, but Figure 5 demonstrates

significant potential for gains in the right setting. These potential welfare gains highlight the
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fact that choosing the allocation that maximizes average scores isn’t necessarily a neutral

choice. For example, in math it benefits higher-scoring students more.

Figure 5: Welfare Gains from Considering Distributional Objectives
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Note: This figure shows the differences in welfare attained under the score maximizing allocation and the
optimal allocation using heterogeneous value-added. The unit is an Atkinson Index indifference, i.e., how
much would test scores have to increase for all students to generate equivalent welfare gains. We report
differences for both within-school and district-wide reallocations.

Estimating these gains highlights three interesting implications for our understanding
of teacher allocations. First, the gains to math scores are larger than the gains to ELA
scores. This is because the variance in teacher value-added on math is larger as shown in
Figure 2 and in prior work (e.g., Chetty et al., 2014a). This suggests that for one-subject
reallocations like Bates et al. (2022), it is indeed better to focus on math in order to raise
average scores. Second, the allocations that optimize math scores and ELA scores are dis-
tinct. This is because the teachers that are the best at teaching each group of students math
are not always the best at teaching those students in ELA. As such, the gains highlighted
in papers that do reallocations using one subject at a time like Delgado (2022) and Bates
et al. (2022) only give a lower bound to the gains from using information on both outcomes
simultaneously. This will motivate our analyses in Section 5 where we aggregate gains over
multidimensional outcomes. Finally, note that the largest possible gains to each group are
different. This asymmetry highlights the welfare implications of structural features of the
education system such as the fact that higher-scoring students tend to be in larger classes
compared to lower-scoring students. This class-size dimension becomes particularly impor-

tant when comparing these allocations to those made using only information about absolute
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advantage from traditional value-added estimates.

Before proceeding, we want to note three caveats in considering these reallocations. First,
note that because we do not change class composition, these gains could be significantly larger
in a district that employs class-level tracking because of greater variance in class composition.
Second, the district-wide reallocations might be infeasible. For example, in SDUSD the union
contract gives teachers with seniority higher priority in hiring. Furthermore, teachers have
strong preferences over locations (Boyd et al., 2005a) and schools (Bates et al., 2022) that
could impede some allocations from being incentive compatible. Finally, the new allocations
must be interpreted in the light of partial equilibrium, barring families re-sorting to classes

(via requests), schools (via school choice), or districts (via in- or out-mobility).

4.2 What Value Does Estimating Heterogeneity Add?

The previous subsection quantified large gains from teacher reallocations, but how much
of these gains would be possible without knowing the heterogeneous effects? If all of these
gains simply come from moving better teachers to larger classes, there is no need to estimate
heterogeneous effects. To evaluate the importance of estimating heterogeneity, we compare
the best allocations using heterogeneous estimates with those possible using only standard
estimates of value-added. This allows us to decompose the welfare gains from the best allo-
cations into the absolute advantage, comparative advantage, and redistribution components.

To find the optimal allocations with the standard value-added we use the same set of social
objective functions and same solution concept, but we replace the estimates of each teacher’s

value-added on both higher- and lower-scoring students with the standard estimates:
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where 7/, , is the standard value estimate described in section 3.2.1 and where we again
solve the problem for 101 different values of the social weights wy, ranging from 0.0 to 1.0.
Intuitively, the gains from using absolute advantage as captured in the standard measures
come from putting the higher value-added teachers in larger classes to maximize average
scores—or using wy-weighted class size when the social planner has heterogeneous preferences
over groups’ gains. The gains attained and reported at each point are calculated using our
heterogeneous estimates to avoid compromising the external validity of our score predictions
that would occur if using standard estimates to predict the effect of sending teachers to very

different classes.

26



4.2.1 Estimating Heterogeneity Increases Average Test Scores

As illustrated in Figure 1, using heterogeneous value-added could increase average scores
beyond what is possible using standard value-added via comparative advantage. This sub-
section explores the extent to which information about comparative advantages can raise
average scores in practice. We document large gains beyond what can be accomplished us-
ing the information about absolute advantage that standard value-added measures provide.

To approach this question, we depict and compare the production-possibility frontiers
for average achievement gains to each group using heterogeneous and standard value-added
in Figure 6. Here again each point presents the average change in lower-scoring students’
test scores in the optimal allocations (on the y-axis) over average change for higher-scoring
students (on the x-axis). relative to the status quo (noted with the square marker). Panel
(a) presents the results from the district-wide reallocation, Panel (b) presents those from the
within-school reallocation. These figures also mark the allocations that maximize test scores
with a black diamond for reference—which is obtained by placing the highest value-added
teachers in the largest classes.

Note that the empirical results in Figure 6 are analogous to the theoretical depiction in
Figure 1. For each panel the outer PPF presents the changes in test scores possible by using
information about both absolute and comparative advantage based on the heterogeneous
teacher effects whereas the interior PPF presents the changes in test scores possible by using
only the information about absolute advantage contained in standard value-added estimates.
Again, the current allocation is denoted with a square.

Comparing the optimal allocations reveals that using information about comparative
advantage can as much as double the achievement gains from reallocations. In the district-
wide reallocation, allocations using comparative advantage generate 97.3% higher ELA scores
and 66.4% higher Math scores than allocations using only absolute advantage. These are
large gains: an average gain of 0.0200 in ELA or 0.023¢ in Math for students in the district
would be an impressive policy victory, especially considering this policy could be implemented
year-over-year for compounding gains. Gains to the within-school reallocations are smaller
in absolute terms, but comparative advantage is still critical. Using heterogeneous effects
boosts average ELA scores by 34.1% and math scores by 50.3% (both about 0.0045¢).

Interestingly, even for a social planner trying to maximize average scores the choice
between standard and heterogeneous value-added measures has striking distributional im-
plications in the district-wide allocations. On one hand, the average-score gains from re-
allocations using only information about absolute advantage (from standard value-added)
are concentrated among higher-scoring students. For example, the higher-scoring students’

gains of 0.03¢0 in ELA and 0.05¢ in Math are almost exactly three times larger than the cor-
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Figure 6: Using Heterogeneous Estimates Produces Larger Gains from Reallocation
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responding gains to lower-scoring students. On the other hand, the large gains from using
comparative advantage in the district-wide reallocations accrue disproportionately to lower-
scoring students. For example, the 0.020 ELA gain is split almost 0.030 to lower-scoring
students and just over 0.01c to higher-scoring students. Figure 6 depicts these observa-
tions visibly: Whereas the expansion path from the status quo through the two PPFs is
almost linear for the within-school reallocations in Panel (b), it is extremely non-linear for
the district-wide reallocations Panel (a). These asymmetries motivate a direct focus on the

equity implications of using heterogeneity.

4.2.2 The Interaction of Distributional Goals and Comparative Advantage

The above section shows that when the goal is to maximize average scores, using het-
erogeneous value-added leads to significant gains. We also know from section 4.1 that when
policymakers favor one group over another, considering their distributional goals leads to
significant welfare gains. Putting these together, we now address how different distribu-
tional objectives impact the gains from comparative advantage, and using heterogeneous
value-added.

Using Figure 6 as a reference, we now compare the welfare from the optimal points on
the inner PPF relying on mean effects and the outer PPF using heterogeneity for a given
distributional goal. Reporting the difference in the Atkinson index between the optimal al-
locations reveals the welfare gains from using heterogeneous value-added estimates for each
distributional goal. Figure 7 reports the results. In Appendix Figure A.3, we present a sim-
pler measure: the true (unweighted) difference in average scores for each pair of allocations.

These analyses reveal that using heterogeneous value-added matters most when the social
planner has slightly egalitarian preferences. This is visible in Figure 7 where for the district-
wide reallocation the highest points on each upside-down U shape are slightly to the right
of utilitarian preferences denoted with the gray line (at wy, = wy = 0.5). Although the
maxima, where using heterogeneous value-added is most useful, are at w;, =0.54 for ELA
and 0.55 for math, the entire region between wy, € [0.30,0.70] show gains equivalent to over
0.0150 of gains to all students.

The comparative advantage gains from estimating heterogeneous value-added are only
large if the social planner cares about both groups. For example, if the social planner
only cares about lower- or higher-scoring students (wy € {0.0,1.0}), there are essentially no
gains from comparative advantage using heterogeneous value-added. This is because lower-
and higher-scoring value-added are positively correlated, so a policy that puts the highest
absolute advantage teachers in the class with the most lower-scoring students will have a very

similar effect on lower-scoring students to a policy that puts the teachers with the highest
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Figure 7: Welfare Gains from Comparative Advantage Along Distributional Objectives
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Note: This figure compares the welfare attained at the optimal allocations based on our measures of value-
added with those attained at allocations based on standard value-added measures. The unit is an Atkinson
Index indifference, i.e., how much would test scores have to increase for all students to generate equivalent
welfare gains. We report differences for both within-school and district-wide reallocations.

lower-scoring value-added in the same classes. This is visible in how close the frontiers are
in Figure 6 and in the upside-down U-shape in the gains reported in Figure 7.

The key driver of these differences are the relative shapes of the PPFs and how they
affect scores. As seen in Figure 6, the best attainable allocations using standard value-added
create a much flatter frontier than those using information about heterogeneity. As a result,
the “price” of an additional score increase to one group is much more expensive if the social
planner relies only on information from standard value-added measures. This has direct
implications for average test scores, as seen in Appendix Figure A.3. Here we depict the
change in average scores generated from moving from the optimal allocation attained using
standard value-added to the optimal allocation attained using our heterogeneous estimates.
Rather than being U-shaped like the welfare gains, these suggest an M-shape where the score
gains are biggest when on these flat regions of the interior PPF, but away from the center
where average scores (and thus class sizes) are all that matter.

In summary, comparative advantage and distributional goals are both potentially impor-
tant to consider, but how each effect interacts with a policymaker’s welfare weights means
one effect may play a much bigger role for a given policymaker. Redistribution is important
when the social planner has very strong preferences for gains to one group relative to another;

however, the standard measures of value-added are able to capture most of these gains be-
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cause value-added heterogeneity is positively correlated within teachers. There is little scope
for welfare gains from comparative advantage. Conversely, when a policymaker values gains
to each group roughly equally, there is little scope for distributional gains to matter, but
significant scope for welfare gains from comparative advantage. Since policy suggests some
social objectives may be more nuanced, we also turn our attention to the implications of our

reallocations for achievement gaps and the creation of winners and losers.

4.3 Other Equity Implications from Reallocations

Having described the optimal reallocations and decomposed the welfare gains from them,
our final task is to explore other equity implications that the proposed reallocations would
have. Specifically, we study how our reallocations affect overall achievement gaps and racial
achievement gaps, and we describe how certain allocations that generate gains on average

still create significant heterogeneity for winners and losers masked by that average.

4.3.1 Shrinking Achievement Gaps

Many education policies—including those that motivated our welfare theory—propose
interventions that will lower the achievement gaps between lower- and higher-scoring stu-
dents. To consider this we plot out the change in two policy-relevant achievement gaps in
Figure 8. First, in Panel (a) we show how the optimal within-school and district-wide real-
locations for each w; would change the achievement gap between students who performed
above and below median in the previous year. We also report similar changes in the racial
achievement gap in Panel (b). We define this gap as the difference in average scores between
Black and Hispanic students versus White and Asian students. Interestingly, we show that
our completely race-blind policies can reduce average racial test score gaps just as much as
the race focused reallocations in Delgado (2022).

The main takeaway from these analyses is that a social planner who cares about gaps can
partially control the size of the gaps by making allocations that are on the efficiency frontier
based on comparative advantage. For example, the baseline gap between students who scored
above and below the median last year is 1.270 in ELA and 1.19¢ in Math. A social planner
focused on raising lower-scoring students’ scores without, on average, hurting higher-scoring
students could shrink those gaps by 4.4 and 7.6% every year. The gap between Black and
Hispanic students versus white and Asian students are smaller: at 0.72¢ in ELA and 0.630
in Math, and these gains could be reduced by 6.5% and 9.7% per year. These changes are
strikingly similar to those in Delgado (2022) where allocations are made to explicitly shrink

racial gaps in math scores subject to not lowering average scores. Delgado (2022) finds a
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Figure 8: Reallocations Can Shrink Persistent Gaps in Student Performance
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Note: This figure shows how optimal reallocations would change achievement gaps between students. Each
panel plots the change in the gaps of interest over the relative weights on higher- and lower-scoring students.
Panel (a) displays the change in the average difference in test scores between students who scored below
versus above the median in the previous year (relative to about 1.20), and Panel (b) displays the change in
the average difference in test scores between Black and Hispanic students versus white and Asian students
(relative to about 0.70). Both gaps are measured in student standard deviations.
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0.0680 reduction in the racial gap with no change in average scores, but using a race blind
policy our district-wide reallocations would shrink the gap by 0.064 and raise average test
scores by 0.0320.12

There are three additional points we want to highlight from this figure with implica-
tions for which gaps are effected. First, whereas both the within-school and district-wide
reallocations could change the achievement gap, only the district-wide reallocations could
meaningfully affect the racial achievement gap. This makes sense because there is more
variance in racial composition across schools than within.

Second, it is interesting to note that the welfare weights that hold gaps constant vary
a lot across allocations. For the within-school reallocations attaining similar gaps requires
a weight on lower-scoring students between 40-43% for ELA and 52-53% for Math. On
the other hand, the district-wide reallocations require much larger weights on lower-scoring
students. For example, it takes 55% and 61% to shrink the achievement gaps in ELA and
math, and even more to shrink the racial gaps: 64% and 72%. For context, this means that
to control the racial-achievement gap in math, a social planner would have to forego 0.007¢
in average gains.

Finally, although utilitarian, test-score maximizing reallocations (w;, = wy = 0.5) within
school tend to not affect either gap significantly,'? district-wide reallocations to maximize test
scores will actually expand both the achievement and racial achievement gaps. Intuitively
this is because of cross-school co-variation in achievement (or race) and class size as discussed

above.

4.3.2 Reallocation winners and losers

As noted above, because there are so many students, no reallocation—even one creating
large average gains—is a Pareto gain in the sense that it helps, or leaves unaffected, all
students. Despite the net gains from matching teachers to their comparative advantages
and putting stronger teachers in larger classes, reallocations will assign some students to less
effective teachers or to teachers who are a worse match for them (despite the teacher being
a better match for their class).

Before communicating these results, we want to highlight the fact that any allocation of
teachers to students will assign some students better teachers than others. In that sense the

“harms” presented here should be benchmarked by the fact that in the status quo roughly

12Note that in our context larger reductions in gains are obviously possible if the social planner is willing
to choose allocations that actually reduce the average scores of certain groups while staying on the frontier.
While it is likely that there are interior allocations in which gaps could be further reduced, we restrict our
focus to allocations that are on the frontier of gains to higher- and lower-scoring students.

13In fact, if anything they would slightly shrink the achievement gap.
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one third of students are assigned to a teacher with below-median value each year (among
teachers teaching the relevant grade in the student’s school), and for these students, the
average “loss” (relative to the expectation) is about 0.10 student standard deviations in
their scores on tests of each subject.

With that context in mind, Appendix Figure A.4 shows that just as some students experi-
ence lower test score growth because of the year-to-year allocations of teachers in the status
quo, some also receive lower value-added teachers in our reallocations. For example, the
optimal within-school reallocations assign between 35-38% of students to lower value-added
teachers, with 39-47% for the district-wide reallocations. Unsurprisingly, more egalitarian
allocations reduce the achievement gains of higher-scoring students relative to the status
quo whereas more elitist allocations reduce the gains to lower-scoring students. Appendix
Figure A.4 also reports the average achievement loss among students who are harmed. In
the optimal district-wide (within-school) allocations, students who receive lower value-added
teachers than they would in the status quo experience 0.104-0.1200 (0.085-0.0990) smaller
ELA testing gains on average and 0.173-0.2040 (0.140-0.1650) smaller math gains on av-
erage, per year. While these figures sound large in terms of educational interventions, it’s
important to remember that they are relatively similar to the “losses” that are occurring in
the status quo. Our reallocations change which students receive teachers with lower absolute
advantage or poorly matched comparative advantage, but on average these changes are more
than offset by even larger average gains to other observably similar students.

One implication of this depiction of winners and losers is that our reallocative policies
have a strong redistributive component. For a social planner who only cares about higher-
versus lower-scoring students this consideration is irrelevant, but in practice districts may
want to preserve some horizontal equity.'* For example, because our reallocations tend to
put teachers with higher absolute advantage in larger classes and because larger classes tend
to be in schools with more higher-scoring students, our optimal reallocations will tend to
benefit lower-scoring students in these schools slightly more than lower-scoring students in
schools with lower average achievement. As discussed in Section 2, this may be troubling
if the policymaker has preferences over multiple dimensions of student characteristics. For
example, this could be problematic if the policymaker is most concerned about lower-scoring
students in schools with lower achievement.

The fact that there are indeed winners and losers among students, in addition to the

observation that teachers, administrators, and teachers’ unions—by revealed preference—

14 At least relative to the status quo. In an obvious sense, the opportunity cost of the current allocation is
that it harming (or at least not benefiting) many students that a different allocation could be making better
off.
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weakly prefer the status quo to any reallocation raises the question of welfare implications
from these reallocation policies. Can schools reallocate teachers in ways that matter for
welfare? How could they make such reallocations incentive compatible for families and
teachers? What would be the cost of smoothing such incentive compatibility constraints?
And would the reallocation still be worth doing? These are questions we consider in the

following section.

5. From value-added to Welfare Added

We have provided a welfare theory, estimated the relevant parameters, and demonstrated
the test score gains from reallocations along a single subject. Our empirical findings so far
can be interpreted as statements about a popular outcome of interest, test scores. With some
assumptions, however, our findings on test score gains can be interpreted as an unbiased, or
less biased than the mean, welfare estimate using our welfare theory.

First, we need to make an assumption about family preferences and their behavior in light
of our policy change. We assume that families—the main decision-makers for students—value
the average achievement of the school they enroll in. This means that students will not re-
sort to new schools after we have rearranged teachers within a school. This is obviously
restrictive as parents may value many aspects of education, some idiosyncratic, like having
a teacher an older sibling took classes, and others more systematic, like sociability and
non-cognitive value-added (e.g., Jacob and Lefgren, 2007; Petek and Pope, forthcoming;
Beuermann et al., 2023). Nevertheless, the vast majority of families do not request specific
teachers, and even when they do, not all requests are honored. This assumption is analogous
to the “no spillovers” condition assumed in Section 2. Given extensive evidence that families
do not respond to information about value-added in school choice (Abdulkadiroglu et al.,
2020) or housing markets (Imberman and Lovenheim, 2016), we think this assumption is
not too restrictive. Readers critical of this assumption should consider all welfare gains in
partial equilibrium terms.

Second, we need to consider the bias terms from Theorem 2. First, consider the covariance
term. It is important to remember that this term is dependent on the policymaker’s welfare
weights. As mentioned above, the covariance terms would be zero if our policymaker truly
cared about only average lower- and higher-scoring students. If this is not the case, for a
completely unbiased estimate, we need the conditional covariance of the true welfare weights
(that consider all factors important to the policymaker) and student gains to be uncorrelated.
We know that different allocations impact racial test score gaps and that gains from some

reallocations accrue to lower-scoring students primarily in higher-scoring schools. While the

35



estimates may not be unbiased in this case, satisfying Equation 2 would still ensure they are
better than simple means. Conditioning on additional factors like race and school average
scores could further assuage these concerns, but for tractability, we stick to conditioning on
test scores.

Next, we consider the estimation bias between our estimated conditional average treat-
ment effect and the truth. While we know teacher impacts differ along different dimensions
(Delgado, 2022), we believe conditioning on test scores captures much of the variation with-
out over-fitting. While race also plays a role, finding common support for all teachers can be
practically challenging. Gender may play a role in teacher impacts as well; however, gender
composition does not change significantly between most classes, limiting the bias introduced
by teacher heterogeneity.

There are still two significant shortcomings that we address in the following section.
First, these teachers teach both ELA and Math, and so an optimal reallocation policy would
consider the impact on both simultaneously. To combine both of these subjects into a
single score function, we map achievement gains to lifetime earnings, which we do using
the subject-specific estimates from Chetty et al. (2014a) of how value-added affects lifetime
earnings.

The second shortcoming to address is the impact of reallocations on teachers. We need
to consider the welfare component attributable to teachers’” disutility from the reallocations.
We treat teacher’s preferences as an incentive compatibility constraint and assume they will
need to be compensated enough to willingly switch classes. Using a revealed preference
argument, if teachers willingly move, they will have been made better off. Assuming all
teachers must be compensated for changing assignments will likely overstate the cost to
teachers because at least some may prefer their new assignments,'® the main challenge is
how to price this disutility. Some papers have attempted to price the disutility to teachers
from various policies (e.g., Rothstein, 2015; Bates et al., 2022), but highly structured wages
in teacher labor markets often make this difficult in practice. We will focus on the marginal
value of public funds (MVPF, Hendren and Sprung-Keyser, 2020) for a hypothetical universal
bonus program.

Note that by restricting our focus on families and teachers in this way, we implicitly as-
sume that other considerations like union concerns or the administrative costs of performing
the reallocations are negligible. While these considerations are likely important, we argue
that welfare gains of a large enough magnitude could allow transfers or interventions to

alleviate these concerns or pay these costs.

15For example, some teachers will be sent to schools they would like to teach at but cannot because of
opening and union tenure requirement.
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5.1 Students: Earnings Implications of Reallocations

We begin with the welfare implications for students under the assumptions outlined
above. These results are most closely tied to our previous analyses focused on student gains.
This subsection demonstrates our approach for finding the optimal achievement gains for

students’ lifetime earnings and performing allocations that maximize those income gains.

5.1.1 Choosing an Income-Optimal Score Function

Because there are numerous allocations, all of which would generate different earnings
outcomes, our first objective is choosing a welfare “score” function to maximize income. To
do so we use the subject-specific estimates of the effects of value-added in Math or ELA on
student earnings from Chetty et al. (2014a). They estimate that a one standard deviation
increase in ELA scores in elementary school generates an additional $1,524 in earnings in
early adulthood and that the corresponding gains in Math are $650.

Because of the fundamental trade-off between the facts that our reallocations generate
larger gains in math, but gains to ELA matter more for earnings, we take a principled ap-
proach to defining the income-optimal allocation. We consider the following set of utilitarian

score functions that take into account value-added in two subjects, s, ELA and Math.'¢

1 . .
Niy Z Zws [Li’s’t ng 9+ (1= Lisy) Tgi 7t)] (9)
BUoGig) s

W(T;w) =

where w, represent the weight on each subject and )  ws, = 1. And now L;,, indicates
whether the student is low scoring in that particular subject.

Solving the optimization problem for a range of wgra € [0.0, 1.0] generates a production
possibility frontier similar to those in the reallocation exercises in Section 4. Whereas the
previous PPF plotted the trade-offs of possible gains between higher- and lower-scoring
students, the PPF in Panel (a) of Figure 9 presents the trade-offs between gains to average
Math and average ELA scores. For example, an allocation focused entirely on Math scores
could raise average math scores by 0.0580 (0.0160 within schools). Because Math and ELA
value-added are somewhat correlated, this allocation would also raise ELA scores by 0.019¢
(0.0050 within schools). The focus on math scores only, however, forgoes large ELA gains.
This could be particularly problematic as ELA gains are nearly 2.5 times more important
for earnings.

We combine the information on possible gains with the estimates of the subject-specific

income effects of those gains to calculate the weight each subject that maximizes income

16We will soon relax the assumption about a utilitarian social planner.
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gains. The estimates from Chetty et al. (2014a) create relative “prices” of gains to scores in
each subject measured in earnings. As such, the income-maximizing weight sets the marginal
rate of substitution between ELA and math scores equal to the relative price. We illustrate
this graphically in Panel (a) of Figure 9 using a dashed line with a slope of the relative
price. This line is tangent to the within-school PPF at wgp4 = 0.71 and to the district-wide
PPF at wgra = 0.70. These values favor ELA gains, but do not focus exclusively on ELA
value-added because the value of marginal gains to ELA scores from increasing wgr 4 beyond
0.71 are smaller than the value of the larger gains to increasing math scores.

The combination of gains from both subjects significantly increases the income gains
from students. The facts that math value-added scores have higher variance and result in
larger achievement gains from reallocations might motivate a social planner to focus only
on math scores in their objective function. In fact, this intuition plays out in the policy
experiments considered in Delgado (2022) and Bates et al. (2022) which both focus only on
math. Surprisingly, our results overturn this intuition. We will discuss the details of how
we obtain these numbers below, but we find that a district-wide allocation that focuses only
on math scores increases average present-valued earnings by $1030. The insight that we can
incorporating information about both math and ELA optimally generates gains of $1390 per
student. This $360 (34%) gain is large and is costless once one allows the social planner to

optimally weight value-added to both test scores.

5.1.2 Characterizing Possible Income Gains

With information about the income-optimal score function in hand, we return to the
question of optimal policy with heterogeneous social preferences. Combining all of the pieces

we define a new social welfare function to optimize

- 1 0 rr
W(j; W) = Z wr, [WELA Li,ELA,t TZ(I’L{)A + (1 - WELA)Li,Math,t Tfﬁzﬁih}
)
+(1 —wr) [WELA (1= Ligas) Thsin + (1= wrra) (1= Lintawng) 7 g(l\l/[;)th}
where now we explicitly sum test score gains over both subjects and both student types with
their respective weights. Because this formulation exponentially increases the dimensionality
of w, we use our evidence about income-optimal weights to choose wgpa = 0.75 and wyiatn =
0.25 in this section. To the extent to which the optimal wfy 4 varies over wy, our results

provide a lower bound on the true earnings gains.'”

1"Note that because not all students are low scoring in Math and ELA the achievement weight w;, may
not apply uniformly to each student. In practice this means that there are four implicit weights generated by
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Figure 9: Reallocations Can Shrink Persistent Gaps in Student Performance
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Note: This figure shows how we combine math and ELA scores to estimate the frontier of possible earnings
gains. Panel (a) displays the PPF of math versus ELA gains (assuming equal weights). The tangent lines
are those implied by the